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Grid-Scale Energy Storage with
Increased PV And EVs




Effects of PV on the Grid

Mismatched supply and demand lead to “the
duck curve”

Net load - March 31
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Modeled PV and Baseload Conflict

Impacts on utilities will occur before 45% PV

— NREL predicts 20% PV is sufficient to require

energy storage
5% of potential PV is stored
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CAISO Geothermal

irements for Achievineg 50% Penetration of Solar Photovoltaic Enerev in California. National Renewable Enersv Laboratorv. NREL/PR-6A20-66970



Modeled PV and Baseload Conflict

Impacts on utilities will occur before 45% PV

— NREL predicts 20% PV is sufficient to require
energy storage
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Impact of EVs on the Grid: Residential

Grid capacity can
accommodate Evs for
several decades
— May have local
transformer loads

exceeded in residential
neighborhoods

Residential TOU rates
causes a shift in charge D
Sta rt time 6a.m. 12 p.m. 6 p.m. 12a.m.
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Electric Charger Usage
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Impact of EVs on the Grid:
Commercial

Building demand charges could be increased

— High number of AC L2 chargers could increase
building power levels

— Momentary DC fast charge peak could increase
\ costs by > $300
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Impact of EVs on the Grid:
Commercial

Building demand charges could be increased

— High number of AC L2 chargers could increase
building power levels

— Momentary DC fast charge peak could increase
\ costs by > $300
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Effect of DC Fast Charging on EBs

Tallahassee electric bus route uses in-route
fast charging

Without demand charges = $0.06/kWh
With demand charges = $0.28/kWh
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Current Electric System

. “ “
Incorporating renewable L E"“ | | | I
energy is challenging d=k. Seircirs

Reserves kept operating for
grid stability

ool Work Types of power plants:
ano

Must be stable
oo| [eamm at 60Hz Base load
ofoolooooiEs * Load following
DDE 0o oo * Peaker

Types of grid services:

* Frequency/voltage regulation
* 0-10s response = low energy
* 10s-1min response = med energy
e 1-10min response = high energy

Load and generation ) Spi””i”$ reserves _ FSECS
Loads must be matched * Daily load following - 1,




Electricity Demand Forecasting

Daily and seasonal variation requires day-
ahead forecasting

— Establish contracts to purchase/sell electricity for
the next day

Actual vs. forecast differences are met through
re S e rve S IgSié)a-vr:;tfsorecast, actual, and record demand, June 19-22, 2012 ua\

30 record peak demand: 28.1 GW
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Dispatchable vs. Base Generation

“Dispatchable” = vary power plant output
— Natural gas power plants

“Baseload” = constant power output (minor
variation acceptable)

— Nuclear, coal geothermal
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- Peaker power plants
14,000
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S. Kaplan. “Power Plants: Characteristics and Costs”, CRS Report for Congress Order Code RL34746, November 13, 2008




Power Plant Response Times

More rapid response has greater value to grid
— Steam generators are slow
— Batteries are nearly instantaneous
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LCOE for Generation Technologies

Solar PV—Rooftop Residential 5184 $300
Solar PV—FRooftop Céd $109 5193
Solar PV—Commmunity $78 $136
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5 Solar PV—Cystalline Utility-Scale N346 358 |y 870
®  Salar PV—Thin Film Utility-Scale 843 550 sb
'IIIIIIIlllllillllllll-llllll.
Solar Thermal with Storage . - $119 $181
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B NextEra on Storage: ‘Post 2020, There May 2
Never Be Another Peaker Built in the US’

GRID EDGE

Energy storage just got a big vote of confidence
from one of the world’s largest utilities.
Videos

by Eric Wesoff
September 30, 2015

The Energy Gang

Webinars

White Papers

Energy storage at utility scale just got a $100M vote of confidence from one of the

world’s largest utilities. N/ i
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Energy Storage Solutions
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Energy Storage Solutions
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Energy Storage Solutions

Lead acid

— Oldest, most well-known
— Highly developed recycling chain

— Lowest cost/kWh

— Relatively low energy storage capacity
— < 3 year lifetime

http://www.pospic.com/?image=http://www.wedocable.com/photo/lead-acid-battery-cell-
diagram-48902.jpeg&title=Lead%20Acid%20Battery%20Cell%20Diagram&tag=Dry%20Cell%20Battery%20
Diagram%20Simple




Energy Storage Solutions

Lithium ion

— Widely accepted in the technology field

— Employed by EVs more than any other battery
— Cost/kWh has decreased by 70% in last 8 years
— < 5 year lifetime e

C. Cooper. “Vehicle Technologies Office Overview”. Annual

Lﬂuur:% Oxide Merit Review and Peer Evaluation Meeting, June 6 2016. F S ECS

http://www.aglmediagroup.com/evolving-lithium-batteries-for-the-internet-of-everything/ 19



Energy Storage Solutions

Flow battery
— NASA technology from the ‘70s
— Energy stored in tanks

Electron flow

— Power delivered in ”itacks” power delivery

/ Membrane ~

3
Positive .
Electrode
O FSEC

~ Catholyte tank ’ —

Energy storage

Negative
Electrode

Anolyte tank



Energy Storage Solutions

All Vanadium /n-Br

— Anode: VZ/V3+df — Anode: Zn/Zn%*

— Cathode: VO#*/VO,* — Cathode: Br/Br,
High tolerance to deep Possible dendrite
discharge formation
No dendrite formation Oil phase required for
High capital cost ($>500/ bromine stability
kWh) High capital cost
Commercially available Commercially available
(Gildemeister CellCube) (ZBB, RedFlow)
> 15 year lifetime > 10 year lifetime

QFSEC



Energy Storage Use Cases

Storage Tech | Energyreq’d | Lifetime | 100% DOD cyc/
(MWh) (yrs) day
800 20 1

Transmission LA, Li, Flow
5| Peaker LA, Li, Flow 100 20 1
§_ Frequency Li 5 20 4.8
< | Distribution LA, Li, Flow 16 20 1
G | PV Integration LA, Li, Flow 4 20 1.25

gicrogrid LA, Li, Flow 2 20 2

Island Grid < LA, Li, Flow 6 20 1
é’ Commercial/Industrial LA, Li, Flow 4 10 1
% Commercial appliance LA, Li, Flow 0.2 10 1
- \_Residential /) LA, Li, Flow 0.01 10 1

O FSEC
Lazard’s Levelized Cost of Storage Analysis — Version 1.0. November 2015 — 2
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PV INTEGRATION
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Copyright 2015 Lazard.

LCOS for Grid-Scale

Compressed Air $192
Flow Battery:!:
Lead-Acid®
Lithium-Ton*
Pumped Hydro#
Sodium? $396

$461

$892
$1,429

$739

$1,079

" FlowBatteryt | §
Lead-Acid”
Lithium-Ton?

Sodium¥

$927
$1,247
$658
$948

Flywheel
Lithium—lon:i: $211

$989

Flow Battery#
Lead-Acid’
Lithium-Ton"’

Sodium’

$516

$426

$923
$1,692

$789
$1,129

Flow Battery*
Lead-Acid’
Lithium-Ton’ $355
Sodium:iv
Zinc*

S0

$165 — $218 — Gas Peaker®

Source:
Note:

Lazard estimates.

$600

$950
$1,068
$686
$957

$800 $1,000 $1,200 $1,400 $1,600 $1,800

Levelized Cost ($/MWh)

Here and throughout this presentation, unless otherwise indicated, analysis assumes 20% debt at 8% interest rate and 80% equity at 12% cost for all technologies and use cases. Assumes seven year

MACRS depreciation unless otherwise noted. Analysis does not reflect impact of evolving regulations/rules promulgated pursuant to the EPA’s Clean Power Plan.

¥ Indicates battery technology.

s
@

conventional alternative for a particular use case may not be the lowest cost conventional alternative for another use case.

No part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior consent of Lazard.

Indicates illustrative conventional alternative to energy storage. Not mtended to reflect the sole conventional alternative (or source of value from replacing such alternatives). The lowest cost

23



Flow Battery" $429 $1,046
Lead-Acid* $433 $946
MICROGRID Lithium-Ton# $369 $562
Sodium* $411 $835

Zinct $319 $416

Flow Battery# $593 $1,231

Lead-Acid* $700 $1,533
Lithium-Ton® $581 $870
Sodium? $663 $1,259
$523 $677

Flow Battery* $349 $1,083

Lead-Acid* $529 $1,511

COMMERCIAL &
INDUSTRIAL

COMMERCIAL
APPLIANCE

Lithium-Ton#

Sodium*

$351 $838
$444
$310 $452

Flow Battery*
Lead-Acid*

Lithium-Ton*

$974
$928
$784
$661 $833

$2,291

Flow Battery# $721 $1,657

RESIDENTIAL Lead-Acid* $1,101 $2,238

Lithium-Ton " $1,034 $1,596

$0 $200 $400 5600 $800 $1,000 $1,200 $1,400 $1,600 $1,800 $2,000 $2,200 $2,400
$212 — $281 Diesel
Reciprocating Engine® Levelized Cost ($/MWh)

Source:  Lazard estimates.

10 | | A Z A RD E Indicates battery technology.
(a) Indicates illustrative conventional alternative to energy storage. Not mtended to reflect the sole conventional alternative (or source of value from replacing such alternatives). The lowest cost conventional
Copyright 2015 Lazard. alternative for a particular use case may not be the lowest cost conventional alternative for another use case.

No part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior consent of Lazard. I



Cost Outlook
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Electric Vehicles

15 BEVs

62 Hybrids

B Hybrid

W PHEV - Gas BEV

B PHEV - G+E

16 PHEVs
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Electric Vehicles

15 BEVs

ids

62 Hybr

N Hybrid

M PHEV - Gas BEV

B PHEV - G+E

16 PHEVs
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Lawrence Livermore

Estimated U.S. Energy Consumption in 2015: 97.5 Quads National Laboratory

Net Electricity (.08
Imports

Solar
0.532

8.3

77

1.81

Electricity
Generation
38.0

Nuclear
8.34

254

Hydro

239 Rejected

Energy
Residential
11.3

59.1
Wind
1.82

Geothermal .
0.224 . | Commercial

8.711

Natural Gas
28.3

Industrial

24.5 Energy
. Services

38.4

Biomass

4.72 Transportation

27.7

Petroleum

35.4

Source: LLNL March, 2016. Data is based on DOE/EIA MER (2015). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the
Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of
renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is
calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, €5% for the

commercial sector, 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent Rounding. LLNL-MI-410527
- g -
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(Gnd operato rs Estimated U.S. Eiergy Consumption in 2015: 97.5 Quads National Laboratory
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24.5 Energy
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Vehicle OEMs
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Seurce: LLNL terch, 2016. bate is based on DOB/EIA MER (2015). 1f this informetion or o sepreduction of it is used, cre Al roplanes, frei t. trains
Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electrici ’ ’
renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typica

calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End
commercial sector, 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent Rounding. LLNL-MI-410527




Potential Vision of Future Energy

Future H, at Scale Energy System

Value Added
Applications

Electricity I'\]lydroglggn/
atural Gas
Infrastructure

Hydrogen
ﬂ Vehicle

Wind

Power
Generation

Synthetic
Fuels
Hydrogen
Solar PV Storage/
Distribution Upgrading
Oil/
Biomass

Hydrogen Other Metals
Generation End Use Refining

Concentrated Solar Power

< g ®
H2 at Scale HTAC 040616 8 # F S E C
=

H2 at Scale: Deeply decarbonizing our Energy System. HTAC Presentation April 6, 2016 30




V2G Locations

20
18
Meals 16
Transport Population % ? 14
Family 12%-14% .g 12 —
. g e
Social g " 10%-12% E 10 ome
Shopping £ - - =
8%-10% -
Medical E ) ’ 3 8 oo
e a = 6%-8% $ 6
Schoo! - !
" 4%-6% Q 5 Shopplng
Work 47 !
B =>=Social
Home 2
= 0%-2%
0

S @Qééz@q@@@ S

S N
& ¥ F KA Rl

Time of day

Arrival time

Ancillary Minimum Power Required Energy/vehicle | Ideal Locations for V2G
Service Interval

Frequency 1 MW (primary) 0sec—10 min Up to 1 kWh Home, Work, Shopping, Social
regulation 2-3 MW (secondary) 30sec—30min  0.05-3 kWh Home, Work, Shopping, Social
10 MW (tertiary) 30 min—=6 hr 3-40 kWh Home, Work
Peak Shaving 50-500 kW 2—-10 hr 6 — 60 kWh Home, Work
Load shifting 100 kW-2 MW 20min—=15hr 2-10kWh Home, Work
Back-up Power 5kW (residential) 5 hr — 5 days 25 -600 kWh
500kW (commercial) 33 - 800 kWh 31



V2G Locations
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